什么叫物理| 一级军士长什么待遇| 戴玉有什么好处| 肝脾不和吃什么中成药| 吃什么健脾胃除湿气| 药流是吃什么药| acl医学上是什么意思| 胸膜炎吃什么消炎药| 老婆子是什么意思| 测怀孕什么时候最准| 胃不舒服吃什么水果| 婴儿血小板低是什么原因| 身上经常出汗是什么原因| 什么运动使人脸部年轻| 头晕冒冷汗是什么原因| 排斥一个人什么意思| 盗汗是什么意思| 什么的竹笋| lesportsac什么牌子| 土豆是什么科| 白球比低是什么原因| 餐标是什么意思| 梅毒会通过什么传染| 子宫内膜增厚有什么影响| 吴用的绰号是什么| 拉尿有泡沫是什么原因| baumwolle是什么面料| 湿疹用什么药膏最有效| 千千阙歌什么意思| 县局局长什么级别| 阴道炎症用什么药| 1938年属什么生肖| bata鞋属于什么档次| 清明节的习俗是什么| balmain什么档次| 黑枸杞泡水后什么颜色| 子宫内膜厚有什么症状| 肾积水是什么症状| 兽性大发是什么生肖| 逍遥丸配什么治失眠| 什么是全麦面粉| 红薯叶不能和什么一起吃| cfa是什么证书| 三板斧是什么意思| 牙疼脸肿了吃什么药| 人流后吃什么水果| 带状疱疹看什么科| 中国最好的大学是什么大学| 强光斑是什么意思| 9月12号是什么星座| 尿路感染吃什么药最好| 梦见参加葬礼是什么意思| 双侧肾盂无分离是什么意思| 肚皮冰凉是什么原因呢| 男人染上霉菌什么症状| 肾结石可以吃什么水果| 牙疼是什么火引起的| 梦到蛇什么意思| 木牛流马是什么意思| 名列前茅是什么生肖| 浑身没劲挂什么科| 风的孩子叫什么| 忻字五行属什么| 同居是什么意思| 93是什么意思| 扁桃体切除有什么影响| 螺旋幽门杆菌吃什么药治疗好| 眼镜是什么时候发明的| 吃石斛有什么好处| mri检查是什么| 为什么长智齿| 什么颜色最显白| 口苦口臭挂什么科| loa胎位是什么意思| 霍山石斛有什么功效| 嘴唇发红是什么原因| 梦见女尸是什么预兆| 二氧化硅是什么东西| 末次月经是什么意思| 孔子的父亲叫什么| 肌红蛋白低说明什么| 练瑜伽有什么好处| 春光乍泄是什么意思| hpv52阳性有什么症状| 反应性细胞改变炎症是什么意思| 李登辉是什么人| 肾蕨是什么植物| 宫颈活检cin1级是什么意思| 意外流产有什么症状| 文房四宝指什么| 悬钟为什么叫绝骨| 沙示汽水有什么功效| 百年好合是什么生肖| 记忆力不好吃什么| 为什么会得尿毒症| 暗忖是什么意思| 10月生日是什么星座| 借你吉言是什么意思| 高铁动力来源是什么| 男生染头发什么颜色好看| 神经官能症是什么病| 吃茄子有什么好处和坏处| 湿疹挂什么科| 人皇是什么意思| 睚眦是什么意思| 人肉搜索是什么意思| 县级干部是什么级别| 室上速是什么原因导致的| 看客是什么意思| izzue是什么牌子| 弟妹是什么意思| 减肥期间应该吃什么| 绿色的鸟是什么鸟| 双子座和什么座最配对| 9k金是什么意思| 月经来了不走是什么原因| 什么东西补铁效果好而且最快| 什么含维生素d| 为什么突然有狐臭了| 高压低是什么原因| 鸽子咕咕叫是什么意思| 嘴唇痒边缘痒用什么药| 折耳根什么味道| 梦见别人家盖房子是什么意思| 口腔溃疡吃什么食物| 回民为什么不能吃猪肉| 58年属什么生肖| 为什么月经每个月提前| 盗墓笔记它到底是什么| 什么手机信号最好最强| 群像是什么意思| 古今内衣是什么档次| 角是什么结构| 什么繁什么茂| erke是什么牌子| 卵巢多囊症是什么原因造成| 为什么会有黑眼圈| 鸡肾炒什么配菜好吃| 胃不舒服喝什么| 冢字的意思是什么| qn医学上是什么意思| 江小白是什么酒| 甲状腺结节对身体有什么影响| q1什么意思| 宠物医院需要什么资质| 割包皮属于什么科室| 什么路人不能走| 血脂四项包括什么| 做胃肠镜挂什么科| 游手好闲是什么意思| 冥想什么意思| 结膜炎什么症状| 逍遥丸适合什么人吃| noah是什么牌子| 头皮屑挂什么科| 什么狗不掉毛适合家养| 宋江属什么生肖| 火疖子用什么药膏| 眼压是什么| 痛风吃什么药好得快| 10月30日是什么星座| 抖m是什么| 蜗牛有什么特点| 籺是什么意思| 国家主席是什么级别| 7777什么意思| 头孢过敏用什么药代替| 停职是什么意思| 脚背有痣代表什么| 尿酸高不能吃什么| 富强粉是什么面粉| 翊读什么| 梦到蜈蚣是什么意思| 为难的难是什么意思| 霉菌性阴道炎用什么药| 胎儿生物物理评分8分什么意思| 角质是什么意思| 耳朵为什么老是痒| 86年属什么| 西瓜什么时候传入中国| 低盐饮食有利于预防什么| 什么扑鼻成语| 溶肌症的症状是什么| fbi是什么| 晚上睡觉手麻木是什么原因| 倍感欣慰是什么意思| 2014年什么年| 诗意是什么意思| 脑干出血是什么原因| 狗吐了是什么原因| 星月菩提五行属什么| hiit是什么意思| 青光眼是什么| 四维什么时候做| 八卦是什么生肖| 画蛇添足什么意思| 怀孕初期会有什么症状| 看病人送什么水果| 啤酒不能和什么一起吃| 耳堵耳闷是什么原因| 什么人不宜吃石斛| 邓紫棋和华晨宇什么关系| bn是什么意思| 梦见父亲死了是什么意思| 期货平仓是什么意思| 宝宝为什么老是吐奶| 咽炎吃什么药| 昏什么昏什么| 吃西兰花有什么好处| 香蕉有什么作用与功效| 肚子老是胀是什么原因| 左侧腰疼是什么原因| 秋天有什么水果成熟| 复方丹参片治什么病| 鬼迷日眼是什么意思| 农历八月初五是什么星座| xpe是什么材质| 秦始皇原名叫什么| ssg是什么意思| 缅甸的首都叫什么名字| 藏红花的功效是什么| 生化妊娠是什么原因导致的| 狗不理是什么意思| 苹果a1660是什么型号| 编程是干什么的| 夜盲症是什么症状| 毛片是什么| 乡政府属于什么单位| 女排精神是什么| 柠檬有什么功效和作用| 头晕需要做什么检查| 佝偻病是缺什么| 宇宙的外面是什么| 维生素b族为什么不能晚上吃| 抵押什么意思| 风尘是什么意思| 料油是什么油| 一阴一阳是什么数字| 痔疮什么情况下需要做手术| 鼻塞黄鼻涕吃什么药| 黑洞长什么样| 有什么赚钱的软件| 凌志和雷克萨斯有什么区别| 鸡蛋和什么不能一起吃吗| 锁阳有什么功效| 人流后可以吃什么| o发什么音| no2是什么气体| 轻度高血压吃什么食物可以降压| 洗衣粉和洗衣液有什么区别| 手腕疼是什么原因| 什么叫闺蜜| 突然头晕是什么情况| 过期酸奶有什么用| 染色体是由什么组成的| 胸腔积液是什么意思| 头晕是什么症状引起的| pwr是什么意思| 虢是什么意思| 项羽字什么| 一杆进洞叫什么球| opo是奶粉里的什么成分| 什么的春寒| 南瓜与什么食物相克| 百度Jump to content

长沙至吐鲁番一飞即达 湘籍游客可享一整年优惠

From Wikipedia, the free encyclopedia
百度   由于胡先生已经加入西班牙国籍,2010年4月份,他用妻子叶女士护照复印件开设银行账户,并与叶国强讲好资金汇入该账户,开户后即将银行卡给叶国强,“叶国强当时说钱进进出出的图个方便。

An electron-on-helium qubit is a quantum bit for which the orthonormal basis states |0? and |1? are defined by quantized motional states or alternatively the spin states of an electron trapped above the surface of liquid helium.[1][2] The electron-on-helium qubit was proposed as the basic element for building quantum computers with electrons on helium by Platzman and Dykman in 1999.[3] 

Schematic illustration of electron-on-helium qubits. The Rydberg (left), spin (centre) and orbital (right) degrees of freedom have been proposed as basis states for quantum computing.

History of electrons on helium

[edit]

The electrostrictive binding of electrons to the surface of liquid helium was first demonstrated experimentally by Bruschi and co-workers in 1966.[4] A theoretical treatment of the electron-helium interaction was developed by Cole and Cohen in 1969[5] and, independently, by Shikin in 1970.[6] An electron close to the surface of liquid helium experiences an attractive force due to the formation of a weak (~0.01e) image charge in the dielectric liquid. However, the electron is prevented from entering the liquid by a high (~1 eV) barrier formed at the surface due to the hard-core repulsion of the electron by the helium atoms. As a result, the electron remains trapped outside the liquid. The energy of the electron in this potential well is quantised in a Hydrogen-like series with the modified Rydberg constant RHe 10?4 RH. The binding energies of the ground (n = 1) and first excited (n = 2) states are -7.6 K and -1.9 K respectively and, as the energy required for excitation is higher than the typical experimental temperature (1 K), the electron remains in the ground state, trapped several nanometres above the liquid surface. The first spectroscopic evidence for these surface states was presented by Grimes and co-workers in 1976.[7]  

The electron motion parallel to the helium surface is free and, as the surface is free of impurities, the electron can move across the helium with record-high mobility.[8] The liquid surface can support electron densities up to an electrohydrodynamic limit of 2.4 billion/cm2, much lower than those typically achieved in semiconductor two-dimensional electron gases. For such low densities the electron system is described by nondegenerate statistics and, because the Coulomb interaction between electrons is only weakly screened by the helium, the spatial position of an electron in the 2D layer is strongly correlated with that of its neighbours. At low temperatures (typically below 1 K) the Coulomb interaction energy overcomes the electron thermal energy and the electrons form a 2D triangular lattice, the classical Wigner solid.[9] The surface density can be increased towards the degenerate Fermi regime on thin helium films covering solid substrates, or on other cryogenic substrates that exhibit a negative electron affinity such as solid hydrogen or neon, although measurements on these substrates are typically hindered by surface roughness.[10]  

a) Split-gate device for electrons on helium used to measure single electron transport. Surface electrons move from the left microchannel reservoir to the right microchannel reservoir through a constriction formed by a split-gate electrode. (b) At low temperatures, classical electron ordering effects give rise to current plateaus corresponding to 1, 2... electrons passing side-by-side through the constriction.  

Since the 1970s, electrons on helium have been used to study the properties of 2D electron liquids and solids, as well as the liquid helium (4He or 3He) substrate. Notable areas of research include collective electron excitations[11] and edge magnetoplasmon effects,[12] many-body transport phenomena and Kosterlitz-Thouless melting in 2D,[13] polaronic effects at the helium interface,[14] the observation of microwave-induced zero-resistance states[15] and incompressible states[16] in the nondegenerate electron gas, and the mapping of the texture of superfluid 3He via interactions between the electron solid and quasiparticle excitations in the superfluid.[17] In recent years, micron-scale helium channels with sub-surface gate electrodes have been used to create devices in which single surface-state electrons can be manipulated,[18][19] facilitating the integration of electrons on helium with semiconductor device architectures and superconducting circuits.

Proposed quantum computing schemes – Rydberg, spin and orbital states

[edit]

In the Platzman and Dykman proposal, the ground and first excited Rydberg energy levels of electrons, trapped above electrodes submerged under the helium surface, were proposed as the qubit basis states. The intrinsic low temperature of the system allowed the straightforward preparation of the qubit in the ground state. Qubit operations were performed via the excitation of the Rydberg transition with resonant microwave fields at frequencies ~120 GHz. Qubit interactions were facilitated by the long-range Coulomb interaction between electrons. Qubit read-out was achieved by the selective ionisation of excited electrons from the helium surface. In 2000, Lea and co-authors proposed that the qubit read-out could be achieved using a single electron transistor (SET) device positioned beneath the helium.[20]

In 2006, Lyon proposed that the spin state of an electron on helium could also be used as a qubit.[21] A CCD-like architecture was proposed for the control of the many-qubit system with dipole-dipole interaction allowing two-qubit gate operations for adjacent spins. A global magnetic field parallel to the helium surface provided the axis for spin excitation, with local magnetic fields applied by submerged conductors used to bring the spins into resonance with microwave fields for qubit excitation. Exchange interaction for adjacent qubits was proposed as a read-out scheme, as demonstrated in semiconductor double-quantum-dot devices.  

In 2010 Schuster and co-workers proposed that for an electron in a lateral trapping potential the orbital states for motion parallel to the helium surface could be used as qubit basis states.[22] The electron trap was integrated into a superconducting coplanar cavity device. It was shown that, as in many superconducting qubit systems, the resonant exchange of microwave photons between the trapped electron and the cavity could be described by the Jaynes-Cummings Hamiltonian. Distant qubits could be coupled via a cavity bus. It was also shown that local magnetic field gradients could allow coupling between the electron spin state and the lateral motion, facilitating the read-out of the spin state via microwave spectroscopy of the cavity.

Decoherence

[edit]

In any quantum computer the decoherence of the qubit wavefunction, due to energy relaxation or dephasing effects, must be limited to a suitably low rate. For electron-on-helium qubits, deformations of the helium surface due to surface or bulk excitations (ripplons or phonons) modify the image charge potential and distort the electron wavefunction. Therefore, for Rydberg and orbital states, the primary source of decoherence is expected to be the emission of ripplons or phonons in the helium substrate. However, the decay rate due to these processes is expected to be slow (~100 μs) compared with the rate at which qubit operations can be performed (~10 ns). For the spin state, the inherent purity of the qubit environment and the weak spin orbit interaction for an electron moving above the helium surface results in predicted coherence times 1 s.

Current developments

[edit]

The first trapping and detection of single electrons on helium was demonstrated by Lea and co-workers in 2005, using a micron-scale helium-filled trap and a single electron transistor beneath the surface to count the electrons.[23] This experiment also demonstrated the first coupling between an electron on helium and a superconducting quantum circuit. Subsequently, other experiments have demonstrated progress towards the coherent control of single electrons on helium. These include ultra-efficient electron clocking in microchannel CCD devices,[24] controlled single electron transport measurements,[25] and the trapping and manipulation of 1D electron arrays,[26] In 2019, Koolstra and co-workers at the University of Chicago demonstrated the coupling of a single electron on helium to a superconducting microwave cavity, with a coupling strength g/2π ~ 5 MHz much larger than the resonator linewidth ~0.5 MHz.[27] In 2020, researchers from Michigan State University and EeroQ presented new results and fabrication progress on an electron-on-helium chip design using the lateral motional state of the electron, in frequencies in the 5–10 GHz range, using a Single-electron transistor readout device.[28]

References

[edit]
  1. ^ Andrei, Eva Y. (1997). Two-Dimensional Electron Systems : on Helium and other Cryogenic Substrates. Dordrecht: Springer Netherlands. ISBN 978-94-015-1286-2. OCLC 840311770.
  2. ^ Monarkha, I?U?. P. (2004). Two-Dimensional Coulomb Liquids and Solids. Kimitoshi Kono. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-10639-6. OCLC 851377154.
  3. ^ Platzman, P. M. (2025-08-08). "Quantum Computing with Electrons Floating on Liquid Helium". Science. 284 (5422): 1967–1969. doi:10.1126/science.284.5422.1967. PMID 10373109.
  4. ^ Bruschi, L.; Maraviglia, B.; Moss, F. E. (2025-08-08). "Measurement of a Barrier for the Extraction of Excess Electrons from Liquid Helium". Physical Review Letters. 17 (13): 682–684. Bibcode:1966PhRvL..17..682B. doi:10.1103/PhysRevLett.17.682. ISSN 0031-9007.
  5. ^ Cole, Milton W.; Cohen, Morrel H. (2025-08-08). "Image-Potential-Induced Surface Bands in Insulators". Physical Review Letters. 23 (21): 1238–1241. Bibcode:1969PhRvL..23.1238C. doi:10.1103/PhysRevLett.23.1238. ISSN 0031-9007.
  6. ^ Shikin, V. (1970). "Motion of helium ions near a vapor-liquid interface". Sov. Phys. JETP. 31: 936.
  7. ^ Grimes, C. C.; Brown, T. R.; Burns, Michael L.; Zipfel, C. L. (2025-08-08). "Spectroscopy of electrons in image-potential-induced surface states outside liquid helium". Physical Review B. 13 (1): 140–147. Bibcode:1976PhRvB..13..140G. doi:10.1103/PhysRevB.13.140. ISSN 0556-2805.
  8. ^ Iye, Yasuhiro (September 1980). "Mobility of electrons in the surface state of liquid helium". Journal of Low Temperature Physics. 40 (5–6): 441–451. Bibcode:1980JLTP...40..441I. doi:10.1007/BF00119515. ISSN 0022-2291. S2CID 122316199.
  9. ^ Grimes, C. C.; Adams, G. (2025-08-08). "Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons". Physical Review Letters. 42 (12): 795–798. Bibcode:1979PhRvL..42..795G. doi:10.1103/PhysRevLett.42.795. ISSN 0031-9007.
  10. ^ Günzler, T.; Bitnar, B.; Mistura, G.; Neser, S.; Leiderer, P. (July 1996). "Evidence for quantum melting in the two-dimensional electron system on a thin helium film". Surface Science. 361–362: 831–834. Bibcode:1996SurSc.361..831G. doi:10.1016/0039-6028(96)00544-4.
  11. ^ Grimes, C. C.; Adams, Gregory (2025-08-08). "Observation of Two-Dimensional Plasmons and Electron-Ripplon Scattering in a Sheet of Electrons on Liquid Helium". Physical Review Letters. 36 (3): 145–148. Bibcode:1976PhRvL..36..145G. doi:10.1103/PhysRevLett.36.145. ISSN 0031-9007.
  12. ^ Mast, D. B.; Dahm, A. J.; Fetter, A. L. (2025-08-08). "Observation of Bulk and Edge Magnetoplasmons in a Two-Dimensional Electron Fluid". Physical Review Letters. 54 (15): 1706–1709. Bibcode:1985PhRvL..54.1706M. doi:10.1103/PhysRevLett.54.1706. ISSN 0031-9007. PMID 10031113.
  13. ^ Dykman, M. I.; Fang-Yen, C.; Lea, M. J. (2025-08-08). "Many-electron transport in strongly correlated nondegenerate two-dimensional electron systems". Physical Review B. 55 (24): 16249–16271. Bibcode:1997PhRvB..5516249D. doi:10.1103/PhysRevB.55.16249. ISSN 0163-1829.
  14. ^ Shirahama, Keiya; Kono, Kimitoshi (2025-08-08). "Dynamical Transition in the Wigner Solid on a Liquid Helium Surface". Physical Review Letters. 74 (5): 781–784. Bibcode:1995PhRvL..74..781S. doi:10.1103/PhysRevLett.74.781. ISSN 0031-9007. PMID 10058846.
  15. ^ Konstantinov, Denis; Kono, Kimitoshi (2025-08-08). "Photon-Induced Vanishing of Magnetoconductance in 2D Electrons on Liquid Helium". Physical Review Letters. 105 (22): 226801. arXiv:1006.0349. Bibcode:2010PhRvL.105v6801K. doi:10.1103/PhysRevLett.105.226801. ISSN 0031-9007. PMID 21231410. S2CID 5034302.
  16. ^ Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis (November 2015). "An incompressible state of a photo-excited electron gas". Nature Communications. 6 (1): 7210. arXiv:1504.04295. Bibcode:2015NatCo...6.7210C. doi:10.1038/ncomms8210. ISSN 2041-1723. PMC 4455090. PMID 26007282.
  17. ^ Ikegami, Hiroki; Kono, Kimitoshi (2025-08-08). "Texture of Superfluid He 3 Probed by a Wigner Solid". Physical Review Letters. 97 (16): 165303. Bibcode:2006PhRvL..97p5303I. doi:10.1103/PhysRevLett.97.165303. ISSN 0031-9007. PMID 17155408.
  18. ^ Glasson, P.; Dotsenko, V.; Fozooni, P.; Lea, M. J.; Bailey, W.; Papageorgiou, G.; Andresen, S. E.; Kristensen, A. (2025-08-08). "Observation of Dynamical Ordering in a Confined Wigner Crystal". Physical Review Letters. 87 (17): 176802. Bibcode:2001PhRvL..87q6802G. doi:10.1103/PhysRevLett.87.176802. ISSN 0031-9007. PMID 11690292.
  19. ^ Rees, D. G.; Kuroda, I.; Marrache-Kikuchi, C. A.; H?fer, M.; Leiderer, P.; Kono, K. (2025-08-08). "Point-Contact Transport Properties of Strongly Correlated Electrons on Liquid Helium". Physical Review Letters. 106 (2): 026803. Bibcode:2011PhRvL.106b6803R. doi:10.1103/PhysRevLett.106.026803. ISSN 0031-9007. PMID 21405245.
  20. ^ Lea, M. J.; Frayne, P. G.; Mukharsky, Yu (2000). "Could we Quantum Compute with Electrons on Helium?". Fortschritte der Physik. 48 (9–11): 1109–1124. Bibcode:2000ForPh..48.1109L. doi:10.1002/1521-3978(200009)48:9/11<1109::AID-PROP1109>3.0.CO;2-I. ISSN 1521-3978.
  21. ^ Lyon, S. A. (2025-08-08). "Spin-based quantum computing using electrons on liquid helium". Physical Review A. 74 (5) 052338. arXiv:cond-mat/0301581. Bibcode:2006PhRvA..74e2338L. doi:10.1103/PhysRevA.74.052338. ISSN 1050-2947. S2CID 119506755.
  22. ^ Schuster, D. I.; Fragner, A.; Dykman, M. I.; Lyon, S. A.; Schoelkopf, R. J. (2025-08-08). "Proposal for Manipulating and Detecting Spin and Orbital States of Trapped Electrons on Helium Using Cavity Quantum Electrodynamics". Physical Review Letters. 105 (4): 040503. arXiv:0912.1406. Bibcode:2010PhRvL.105d0503S. doi:10.1103/PhysRevLett.105.040503. ISSN 0031-9007. PMID 20867827. S2CID 6533048.
  23. ^ Papageorgiou, G.; Glasson, P.; Harrabi, K.; Antonov, V.; Collin, E.; Fozooni, P.; Frayne, P.G.; Lea, M.J.; Mukharsky, Y.; Rees, D.G. (2025-08-08). "Counting Individual Trapped Electrons on Liquid Helium". Applied Physics Letters. 86 (15): 153106. arXiv:cond-mat/0405084. Bibcode:2005ApPhL..86o3106P. doi:10.1063/1.1900301. ISSN 0003-6951. S2CID 118375967.
  24. ^ Bradbury, F. R.; Takita, Maika; Gurrieri, T. M.; Wilkel, K. J.; Eng, Kevin; Carroll, M. S.; Lyon, S. A. (2025-08-08). "Efficient Clocked Electron Transfer on Superfluid Helium". Physical Review Letters. 107 (26): 266803. arXiv:1107.4040. Bibcode:2011PhRvL.107z6803B. doi:10.1103/PhysRevLett.107.266803. ISSN 0031-9007. PMID 22243176. S2CID 40591865.
  25. ^ Rees, D. G.; Totsuji, H.; Kono, K. (2025-08-08). "Commensurability-Dependent Transport of a Wigner Crystal in a Nanoconstriction". Physical Review Letters. 108 (17): 176801. Bibcode:2012PhRvL.108q6801R. doi:10.1103/PhysRevLett.108.176801. ISSN 0031-9007. PMID 22680890.
  26. ^ Ikegami, Hiroki; Akimoto, Hikota; Rees, David G.; Kono, Kimitoshi (2025-08-08). "Evidence for Reentrant Melting in a Quasi-One-Dimensional Wigner Crystal". Physical Review Letters. 109 (23): 236802. Bibcode:2012PhRvL.109w6802I. doi:10.1103/PhysRevLett.109.236802. ISSN 0031-9007. PMID 23368238.
  27. ^ Koolstra, Gerwin; Yang, Ge; Schuster, David I. (December 2019). "Coupling a single electron on superfluid helium to a superconducting resonator". Nature Communications. 10 (1): 5323. arXiv:1902.04190. Bibcode:2019NatCo..10.5323K. doi:10.1038/s41467-019-13335-7. ISSN 2041-1723. PMC 6874564. PMID 31757947.
  28. ^ "B17.00009. Resonant phenomena in a microchannel-confined Wigner solid". Virtual APS March Meeting. 2025-08-08. Retrieved 2025-08-08.
脚没力气是什么原因 六味地黄丸什么时候吃 胎发什么时候剃最合适 白羊座是什么性格 卡他症状是什么意思
跪乳的动物是什么生肖 华佗是什么生肖 脾胃虚吃什么 记过属于什么处分 坐北朝南什么意思
胆囊手术后不能吃什么 93年属于什么生肖 二月初四是什么星座 子痫前期是什么意思 什么食物补钾
鬼佬是什么意思 万年历是什么 更年期的女人有什么症状表现 纯钛是什么材质 玫瑰茄是什么东西
想吐是什么原因youbangsi.com 肝硬化前期有什么症状hcv9jop2ns3r.cn 婚检能检查出什么hcv9jop6ns0r.cn 9是什么意思hcv9jop4ns5r.cn 肺结核通过什么途径传染hcv9jop4ns8r.cn
清奇是什么意思hcv8jop2ns3r.cn 左手发麻什么原因hcv9jop6ns1r.cn 刻薄什么意思hcv8jop8ns0r.cn 胃不舒服恶心想吐吃什么药hcv7jop9ns8r.cn 南极为什么比北极冷hcv8jop8ns4r.cn
荧惑守心是什么意思hcv8jop3ns1r.cn 双侧输尿管不扩张是什么意思hcv8jop2ns2r.cn 照看是什么意思hcv8jop6ns5r.cn ogtt是什么意思hcv7jop7ns0r.cn 停电了打什么电话hcv7jop6ns3r.cn
国际劳动日是什么生肖wzqsfys.com 甲状腺不能吃什么hcv9jop5ns0r.cn 三个水读什么hcv8jop2ns3r.cn 做梦梦到已故的亲人是什么意思hcv7jop9ns4r.cn 什么星座最渣hcv8jop3ns2r.cn
百度